Targeting Sentiment Expressions through Supervised Ranking of Linguistic Configurations

نویسندگان

  • Jason S. Kessler
  • Nicolas Nicolov
چکیده

User generated content is extremely valuable for mining market intelligence because it is unsolicited. We study the problem of analyzing users’ sentiment and opinion in their blog, message board, etc. posts with respect to topics expressed as a search query. In the scenario we consider the matches of the search query terms are expanded through coreference and meronymy to produce a set of mentions. The mentions are contextually evaluated for sentiment and their scores are aggregated (using a data structure we introduce call the sentiment propagation graph) to produce an aggregate score for the input entity. An extremely crucial part in the contextual evaluation of individual mentions is finding which sentiment expressions are semantically related to (target) which mentions — this is the focus of our paper. We present an approach where potential target mentions for a sentiment expression are ranked using supervised machine learning (Support Vector Machines) where the main features are the syntactic configurations (typed dependency paths) connecting the sentiment expression and the mention. We have created a large English corpus of product discussions blogs annotated with semantic types of mentions, coreference, meronymy and sentiment targets. The corpus proves that coreference and meronymy are not marginal phenomena but are really central to determining the overall sentiment for the toplevel entity. We evaluate a number of techniques for sentiment targeting and present results which we believe push the current state-of-the-art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Supervised Method for Constructing Sentiment Lexicon in Persian Language

Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...

متن کامل

ECNU at SemEval-2016 Task 7: An Enhanced Supervised Learning Method for Lexicon Sentiment Intensity Ranking

This paper describes our system submissions to task 7 in SemEval 2016, i.e., Determining Sentiment Intensity. We participated the first two subtasks in English, which are to predict the sentiment intensity of a word or a phrase in English Twitter and General English domains. To address this task, we present a supervised learning-to-rank system to predict the relevant scores, i.e., the strength ...

متن کامل

SAIL: Sentiment Analysis using Semantic Similarity and Contrast Features

This paper describes our submission to SemEval2014 Task 9: Sentiment Analysis in Twitter. Our model is primarily a lexicon based one, augmented by some preprocessing, including detection of MultiWord Expressions, negation propagation and hashtag expansion and by the use of pairwise semantic similarity at the tweet level. Feature extraction is repeated for sub-strings and contrasting sub-string ...

متن کامل

Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings

Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a finegrained sentiment analysis. For example, master, seasoned and familiar point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semisupervised technique that uses se...

متن کامل

ReNew: A Semi-Supervised Framework for Generating Domain-Specific Lexicons and Sentiment Analysis

The sentiment captured in opinionated text provides interesting and valuable information for social media services. However, due to the complexity and diversity of linguistic representations, it is challenging to build a framework that accurately extracts such sentiment. We propose a semi-supervised framework for generating a domain-specific sentiment lexicon and inferring sentiments at the seg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009